If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-1220=0
a = 1; b = 1; c = -1220;
Δ = b2-4ac
Δ = 12-4·1·(-1220)
Δ = 4881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{4881}}{2*1}=\frac{-1-\sqrt{4881}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{4881}}{2*1}=\frac{-1+\sqrt{4881}}{2} $
| 2x+7/5-3+11/2=2x+8/3-5 | | 15=20t+5t^2 | | x-10+4=1 | | 1.5x2.0=3 | | 3x+9=7x+33 | | x-3=√(17+x) | | x+2*2=13 | | -8-5v+6v=v-5+v | | 47x+27=57 | | 9x^2-5=11 | | X2+4x+4=24 | | 6t+4/3=8/3 | | 2x-17=-2 | | 8m/3+6=4 | | 20x+15=-5 | | y=√64 | | k=((-1/2)*3k)+7 | | √y=64 | | 3+2x/3=x-15 | | 46=4+2x | | x(x+4)+(2x-6)=50 | | 4∑n^2/2n=0 | | 3/5x=12/5 | | 2x+3+5x-14=180 | | 2x+3=5x-14=180 | | 5n^2-49n+126=0 | | a^2+4a-9=2a-6 | | r-4r-21r=0 | | 5x-14=2x+3 | | 2-8a=17-15a | | 22x-17=12x+7 | | 5x+2=6x+12 |